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Abstract 

A pinpoint landing capability will be a critical component for many planned 

NASA missions to Mars and beyond. Implicit in the requirement is the ability to 

accurately localize the spacecraft with respect to the terrain during descent. In this paper, 

we present evidence that a vision-based solution using craters as landmarks is both 

practical and will meet the requirements of next generation missions. Our emphasis in 

this paper is on the feasibility of such a system in terms of (1) localization accuracy and 

(2) applicability to Martian terrain. We show that accuracy of well under 100 meters can 

be expected under suitable conditions. We also present a sensitivity analysis that makes 

an explicit connection between input data and robustness of our pose estimate. In 

addition, we present an analysis of the susceptibility of our technique to inherently 

ambiguous configurations of craters. We show that probability of failure due to such 

ambiguity is vanishingly small. 

 

1. Introduction 

Current planetary landing technology limits spacecraft delivery accuracies to tens of 

kilometers at best. For instance, the recent Mars Exploration Lander (MER) missions had 

a landing error ellipse of greater than 30 km x 80 km. Future missions call for pinpoint 

delivery of a lander to within 100 meters of a target preselected from orbital imagery. 

This will require a number of technological advancements in propulsion, guidance,  

navigation and control (GNC), map generation, and terrain relative localization. Our 

work addresses the last of these areas by allowing for the first time localization accuracy 



on the order of tens of meters from the start of image acquisition at altitudes as high as 8 

to 10 km above the surface.  

Descent image based spacecraft localization can be divided into three parts: (1) 

identification of landmarks in imagery, (2) matching of identified 2D landmarks to a 

database containing their 3D terrain relative coordinates, and (3) recovery of terrain 

relative spacecraft position, attitude and velocity from the 2D to 3D correspondences. 

The last problem is referred to in the Computer Vision community as pose estimation. 

The algorithms to solve each part of the localization problem must be efficient enough to 

run on a flight processor with very limited computational power within the time 

constraints of the mission. For a landing on Mars, this may be on the order of 2 to 3 

seconds from image acquisition to spacecraft localization using a 100 MIPS PowerPC 

750 processor. For the case of crater landmarks, we have demonstrated in Yang and 

Ansar (2005) solutions to the identification and matching problems and have shown that 

our spacecraft localization algorithms run within the time limits for a Mars mission on 

flight equivalent hardware. Fig. 1 shows some example crater matching results while Fig. 

2 presents runtimes for various system components on a Power PC 750. The advantages 

of this crater landmark based system are: 

1. Less sensitivity to illumination conditions and viewpoint change due to 

relative invariance of crater rims, hence centroids, over these changes. 

This relaxes the requirements for base map generation since the map can 

be created from different orbital sensors and at different times of day and 

image scales. 



2. Less dependence on onboard spacecraft state estimation since the crater 

matching algorithm uses crater geometry (shape, size ratio, distance ratio, 

and perspective invariance properties) directly to match craters between 

the descent image and the base map. 

3. Minimal onboard data storage requirement. Each landmark (elliptical 

crater) is represented by nine parameters (3D position, major and minor 

axes, 2D orientation and surface normal) and can be stored in 36 bytes in 

computer memory. The landmarks in a heavily cratered landing site can 

be stored in less than 100 kilobytes, which is two to three orders of 

magnitude smaller than a raster map.  

 These results are presented in detail in Cheng and Ansar (2005).  

This paper focuses primarily on feasibility of the technique. It is organized into 

two parts. The first addresses localization accuracy given 2D image to 3D map 

correspondences and presents experiments to show applicability to future EDL scenarios. 

In this section, we also present a parametric analysis of the sensitivity of our method to 

general crater configurations. This is an essential tool to identify near-degenerate cases 

which can give rise to suspect pose estimates. The second part of the paper addresses in 

detail the likelihood of inherent geometric ambiguity in detected craters which can defeat 

pose estimation. 

 

2. Localization Algorithms and Expected Accuracy 



The problem of determining the 6 degree of freedom pose (position and attitude) of a 

calibrated camera from known correspondence between 3D points and their 2D image 

counterparts is classical in both photogrammetry and computer vision. In the former it is 

known as space resection and in the latter as the n-point pose problem or pose estimation. 

Many solutions exist, most depending on non-linear optimization to minimize some cost 

function based on image reprojection error or 3D reconstruction error. Our approach 

consists of two steps, initialization and refinement. The first step uses a non-iterative, 

direct linear solution to the pose problem. It has a number of advantages. These include 

no need for initialization, no possibility of convergence to a local minimum, applicability 

to as few as 4 correspondences, and a guaranteed correct solution provided input noise is 

constrained. The main drawback of this algorithm is a highly non-linear complexity with 

respect to the size of the input data. Thus, we often use only a subset of the data to 

initialize. The refinement step consists of an iterative optimization algorithms combined 

with a statistically robust estimation scheme. The iterative algorithm scales well with the 

size of the input data, is relatively insensitive to noise, and is both highly accurate and 

fast converging given good initialization.  

 We begin with a few preliminary points of notation and nomenclature. 

Recovering camera pose corresponds to finding the Euclidean transformation (R,T) ∈∈∈∈ 

SO(3) x R
3
 taking points in some global coordinate frame to those in a frame centered on 

the camera.  If Vw is a point in the global frame, then its representation in the camera 

frame is Vc = RVw + T. The pose of the camera in the global frame is then given by (R
T
, -

R
T
T). The camera frame is always located at the center of projection with the z-axis 



coincident with the optical axis, and positive x to the right and positive y downward on 

the image plane.  Normalized coordinates refer to coordinates expressed in the camera 

frame with z = 1. These are obtained from pixel coordinates via the known intrinsic 

geometry of a calibrated camera.  

 

2.1 Pose Initialization 

We use a recent linear algorithm that provides localization accuracy nearly on a par with 

the best non-linear optimization schemes for cases of moderate noise in input data. As 

mentioned above, this approach avoids many of the usual problems associated with 

iterative algorithms, such as slow convergence and convergence to a local minimum. 

Details can be found in Ansar and Daniilidis (2003). We present only a sketch here.  

 Suppose that n points in some global coordinate system are given by {wi} and 

their normalized image coordinates by {pi}. Then there exist real numbers λi such that {qi 

= λipi} are the 3D coordinates of the points in the camera frame. Let dij be the squared 

distance between points wi and wj. Since distance is a Euclidean invariant, we have  
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This is a quadratic system of n(n-1)/2 equations in the variables {λi}. If we find an 

efficient solution for this system, we will have recovered the 3D coordinates of all points 

in the camera frame. Then recovering the world to camera transformation is an instance 

of the classical absolute orientation problem. We solve the latter following Horn, et al. 

(1988). The solution of the system in Eq. 1 proceeds as follows. We replace the product 



λiλj with the symbol λij. Now Eq. 1 is linear in the n(n+1)/2 variables {λij},  and we are 

free to use linear algebra techniques such as singular value decomposition (SVD). 

Unfortunately, the linear system is under-constrained and has a multidimensional kernel. 

Suppose that the true solution is the vector λλλλ = (λ11, λ12, …)T. If {vi} is a basis for the 

kernel of the original linear system, then there exist real numbers {ki} such that  

                                                                                                                                                                                                                                                                            λλλλ = Σki vi                                                    (2) 

The solution for the coefficients {ki} depends on the observation that for any quadruple 

of integers {a, b, c, d} and any permutation {a', b', c', d'}, we have λabλcd = λa'b'λc’d'. In 

effect, we are reintroducing the quadratic nature of the problem with these constraints. By 

substituting rows of λλλλ in Eq. 2 into expressions of this form, we obtain another quadratic 

system in the k's. As before, we linearize this system by replacing second order terms 

with symbols. The new system is provably overconstrained, and we always obtain a 

unique solution. Once we have λλλλ, we can obtain {λi = sqrt(λii)}, and the 3D coordinates 

of all points are known in the camera frame. 

 The runtime for this algorithm is comparable to non-linear optimization 

techniques for up to 8 points. Assuming we have matched more than 8 points during 

descent, we take a random sampling of <8 to initialize with the algorithm just described.  

 

2.2 Pose Refinement 

We now give a brief overview of the refinement step. This combines a fast converging 

iterative algorithm from Lu, Hager and Mjolsness (2000) with some standard robust 

statistical techniques. The algorithm of Lu, et al. is guaranteed to converge but may 



converge to a local minimum if poorly initialized. Hence, we start its search at the result 

provided by our initialization step above. The novelty of this algorithm lies in its use of 

an objective function in space rather than on the image plane. This is similar in spirit to 

the constraint in Eq. 1. However, instead of an explicit 3D reconstruction, the technique 

relies on what Lu, et al. refer to as object space colinearity. Essentially, they minimize 

the distance between the line of sight vector associated with a 2D point and its 3D 

counterpart. If pi is again an image point in normalized coordinates, then consider the 

matrix  

                                                         Pi = (pipi
T
)/(pi

T
pi)                                                (3) 

We assert without proof that this matrix projects any point in space onto the ray defined 

by pi. Then using the notation of this and the previous section, the objective function used 

to find (R,T) is given by  

                                                         E(R,T) = ΣΣΣΣ ||(I - Pi)(Rwi + T)||                                (4) 

Where Pi is given in Eq. 3. Lu, et al. present an elegant iterative scheme based on Horn's 

solution of the absolute orientation problem. This requires an SVD computation of a 3 x 3 

matrix at each step, so that the complexity grows very slowly as a function of data size 

and is limited by construction of a 3 x 3 cross covariance matrix from n  points.  

 We combine this algorithm with a Least Median of Squares (LMedS) estimator to 

provide outlier rejection and a statistically robust solution. Given n matched landmarks, 

we determine pose from a subset of size m<n a total of L times. L is chosen to guarantee a 

maximum algorithm failure rate of Pfail given m landmarks and a probability Pg that any 

given landmark is valid (i.e. not an outlier). L is given by 



                                                        )0.1log(/)log( m
gfail PPL −=                                   (5) 

Details and justification can be found in Fischler and Boller (1981). For each trial, we 

compute the median error in reprojection of 3D points onto viewing rays as given by Eq. 

3. We then take as a valid model the trial with lowest squared median error. Any data 

point exceeding an error threshold with respect to this model is considered an outlier. 

Finally, we take all points that are not outliers, and apply the core pose estimation 

algorithm to obtain the best pose. 

 Note that while the results presented in this paper assume cratered terrain, the 

localization algorithms will work equally well with other features, provided accurate 2D 

image to 3D map correspondences can be established. We are currently exploring such 

features for navigation around small bodies (asteroids and comets). Details of ongoing 

work were presented in Ansar (2004). 

 

2.3 Pose Accuracy, Experiments and Results 

We have conducted numerous experiments using Mars-like as well as other scenarios to 

test the accuracy of our localization algorithms and have developed a full simulation 

environment for further testing. We now present two experiments to demonstrate the 

accuracy and robustness of our technique. The first is a purely synthetic result showing 

localization error in simulation. The second show a Mars landing scenario using real 

imagery from the Mars Odyssey THEMIS instrument.  

 



Experiment 1: We have developed a Monte Carlo simulation to characterize the 

performance of our pose estimation technique subject to varying noise levels in both 

imagery and 3D map knowledge, changes in camera geometry (field of view (FOV), 

sensor resolution, spacecraft insertion altitude and attitude, and probability of outliers in 

matched 2D-3D data. The purpose of this simulation is to enable a parametric study of 

localization error. We decouple this from the image processing problem by avoiding the 

use of synthetic imagery and supplying directly the 3D coordinates of synthetic 

datapoints, projecting to the image plane and corrupting with noise or introducing 

outliers. In Fig. 3, we show the result for lateral localization error of a spacecraft at an 

altitude of 8 km with 100 deg. FOV imager at 1024 x 1024 resolution (equivalent to ~19 

m/pixel on the ground) and an assumption of 15 matched data points. Systematic 

Gaussian image noise is added at a level of 1 pixel standard deviation, which we expect is 

higher than we will find in practice. In this example, we vary the percentage of outliers 

from 0% to 15%. A point marked as an outlier is selected with uniform probability from a 

30 pixel x 30 pixel box centered at ground truth. The results displayed are mean values 

over 1000 trials. We show results for both the LMedS robust algorithm and a version 

using only the initialization and iterative refinement step. Observe that the LMedS output 

remains stable over outlier rates much larger than <5% rates we typically expect.  

The results are fully consistent with the EDL requirements of < 100 meters 

localization accuracy for upcoming missions. Note that while we present only lateral 

position error, which is of primary relevance to pinpoint landing, we in fact solve for the 

full 6 degree of freedom pose of the spacecraft. While there is some inevitable coupling 



of position and attitude in the solution, this effect is generally minor, and the primary 

error component in the algorithm lies in the position estimate. See Ansar and Daniilidis 

(2003) for a complete discussion. 

 

Experiment 2: We have developed a simulation environment that allows us to test our 

crater detection, matching and pose algorithms in an end-to-end fashion through a full 

landing trajectory. We demonstrate its application to a Mars landing scenario using a 

trajectory based on specifications for the planned Mars Science Lab (MSL) mission. The 

3D database (map) consists of a large composite image of Martian terrain containing over 

790 craters taken by the Mars Odyssey THEMIS instrument. Using the descent trajectory 

mentioned, we generated synthetic imagery to simulate the view from a lander.  Note that 

this is a preliminary dataset used for development of the simulator, and the same image is 

used for the map and then zoomed and warped according to ground truth spacecraft pose 

to produce the descent views. Thus, while this dataset does demonstrate invariance of our 

detection and matching algorithms to geometric distortion, it does not demonstrate 

photometric invariance. However, we have ample evidence from the NEAR mission that 

our crater detection and matching algorithms work well with lighting changes under real 

mission conditions. See Cheng and Miller (2003) for details. In future, we will use 

different base images for map and descent imagery generation in our simulator.  

Since the Martian surface as viewed from high altitudes is essentially planar, we 

used a homography transform to warp the map image and generate the descent views. 

Planarity guarantees that this is a faithful and realistic representation of the view from a 



descent camera with 512 x 512 imager and 90 degree FOV. In Fig. 4, we show a snapshot 

from our simulator. The three panels on the upper half of the display show camera view, 

detected craters, and craters matched to the map, respectively. The lower left panel shows 

the true 3D position of the spacecraft in dark gray and the estimated position in white. 

The lower right shows absolute position error. Throughout this trajectory from 12 km to 8 

km in altitude, the position error never exceeds 50 meters in norm, and the final error at 8 

km altitude was 9 meters for the run displayed.  

The 8 km altitude limit is a function of the 18 m/pixel resolution of the THEMIS 

image the 512 x 512 resolution of our descent camera. With a 1000 x 1000 camera with 

90 degree FOV and map resolution on the order of Mars Reconnaissance Orbiter (MRO) 

of 30 cm/pixel, our algorithm should be useable to an altitude of ~150 m, provided there 

are suitable craters in the view. Assuming a more realistic lower limit of 50 m for the 

smallest visible craters, our technique with an MRO-like map will operate reliably to 

within 1 km of the surface. 

Note that we are using our algorithms for crater detection and matching on a real 

image of Mars. The position estimation uses the full robust version of our algorithm and 

estimates all 6 degrees of freedom of the spacecraft pose; no prior information on altitude 

or attitude is assumed at any time. Observe that noise is not artificially introduced but is a 

real artifact of image processing. 

 

2.4 Covariance Propagation 



A useful pose estimation system must guarantee correct pose to within a required 

accuracy and with predictable statistics. This depends not only on the pose algorithm and 

the accuracy of landmark detection and matching in image data (e.g. our crater search 

algorithms) but on the distribution and accuracy of the positions of these landmarks in 

space. There are configurations that lead to especially sensitive solutions. We must be 

able to recognize these when they occur, and characterize the uncertainty in resulting 

pose estimates. At the same time, we must be able to characterize analytically the effects 

of uncertainty in 3D knowledge. 

Propagation of covariance to estimated pose parameters is needed to provide an 

essential confidence metric. Without this information, risk mitigation is impossible. 

Furthermore, any sophisticated filtering technique for state estimation requires a 

covariance matrix for estimated parameters. Even in cases where noise levels are low, 

there are likely to be configurations of landmarks that are inherently noise sensitive. It is 

critical that such situations be identified when they occur and that the directions of most 

and least stable pose be identified. 

We follow the technique described in Haralick (1994) to propagate covariance 

from error estimates on 3D and 2D knowledge. The technique depends on existence of an 

objective function that is directly minimized to obtain estimated parameters from 

measurements. This constraint is used to solve implicitly for errors in the former given 

errors in the latter. Propagation is correct to first order. While our initialization algorithm 

does not directly minimize the constraint in Eq. 1, the refinement algorithm does directly 

minimize the constraint in Eq. 4. Thus a covariance on overall pose can be determined.  



Given a constraint to be minimized of the form f(θ, X)=0, where θ are parameters 

to be estimated and X is a set of measurements (in our case, 2D image measurements and 

3D map coordinates), we calculate an implicit error ∆θ  on the estimates from an error ∆X 

on the measurements. In the presence of noise, f achieves a minimum at f(θ + ∆θ, X+∆X). 

Thus 
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Now taking a Taylor expansion of ∂f/∂θ  about (θ, X) and observing that the gradient also 

vanishes at this point, we obtain to first order the relationship 
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From this we can solve directly for ∆θ in terms of ∆X. The covariance of θ is simply 

E(∆θ∗∆θΤ), where E signifies the expectation value. Similarly, we have Cov(X) = 

E(∆X*∆XT). A trivial substitution into Eq. 7 then gives us 
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For simplicity, we have used numerical derivatives in all computations of Jacobians. In 

Fig. 5, we show the 1σ  error ellipses for both position and attitude for several cases of 

synthetic data using the analysis above. We vary the image noise, 3D map noise, image 

point distributions and number of detected points. The resulting error ellipses behave 

according to intuition. Larger numbers of points shrink the ellipses. Higher noise levels 

cause them to grow. Biases in the distribution reflect in obvious ways.  



  Cov(X) is currently just a diagonal matrix encoding expected image and map 

noise variances. However, a full covariance matrix can be accommodated if additional 

structure in measurement error is known. Observe that the maximum error directions 

clearly change as a function of crater/landmark distribution. Note also that the 

magnitudes of the position errors are well within the requirements for precision landing 

for high noise levels. Attitude errors remain well under 0.5 degrees throughout. 

 

2.5 Compensation for Velocity 

In a real landing, it is not sufficient to find instantaneous position and attitude only. 

Course corrections must incorporate ground relative velocity information as well, since 

the effect of winds cannot be determined from IMU data. An image based horizontal 

velocity estimator, the Descent Image Motion Estimation System (DIMES), was 

successfully used on both Mars Exploration Rovers (MER) landings. The DIMES 

algorithm combines measurements from a descent camera, a radar altimeter and an 

inertial measurement unit (IMI).  To deal with large changes in scale and orientation 

between descent images, the algorithm uses altitude and attitude measurements to rectify 

image data to a level ground plane. Feature selection and tracking is employed in the 

rectified data to compute the horizontal motion between images Cheng, et al. (2004). 

Although DIMES satisfied the MER landing requirement, it estimates only an average 

velocity from image data. This is inadequate for pinpoint landing applications.  However, 

we show that given our position estimates, we can integrate IMU data to obtain 



"instantaneous" velocity estimates and bound landing error to well withing future mission 

requirements.  

We estimate an upper bound on the landing error el as follows 

                                                                 dTeee vpl ∗+=                                                      (9) 

Where eP is the position error at the moment of transition from freefall to powered 

descent, eV is the instantaneous velocity error at that moment, and dT is the time 

remaining to the ground. Our effort here is a proof of concept only. We fully expect that 

any final system will incorporate a sophisticated Kalman or similar filter to determine 

velocity from our position measurements and easily surpass the results of our approach. 

However, even the relatively simple technique we describe below produces adequate 

results. Suppose two frames are taken at times tf and to, with associated position estimates 

P(tf) and P(to). If acceleration data a(t) are also available, then a simple derivation shows 

that at  any time t, the instantaneous velocity can be computed as  
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If multiple frames are available, we can further refine the estimate of V(t) by taking a 

weighted average of all pairwise estimates. We have determined empirically that 

weighting by difference in time between the frames and inversely by altitude works well. 

So that if a sequence of indexed frames is available, then the sum over all i<j of the 

quantity 
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Here Vi,j(t) is the instantaneous estimate of Eq. 10 given by frames i and j. In Fig. 6, we 

show the difference between using this integration technique in estimating el in Eq. 9 

versus an approach that estimates average velocity from the last two frames before 

transition to powered descent. Results are shown as a function of the altitude at which 

dead reckoning (i.e. transition from freefall to powered descent) starts. Note that while 

the averaging technique fails to meet requirements for pinpoint landing, the integrated 

technique easily satisfies them for all transition points considered. 

 

2.6 Attitude Recovery 

We have made little mention of attitude because position recovery is the more relevant 

issue for localization. In real mission scenarios, attitude is generally well known via star 

trackers prior to entry. Nevertheless, we always solve directly for all 6 degrees of 

freedom of the spacecraft pose. In section 3.2, we will show that attitude is very well 

constrained by our technique. In all cases discussed so far, we are able to estimate it to 

within 0.5 degree absolute error, even in the presence of high noise. 

 

3 Crater Uniqueness Analysis 

We now address the feasibility of our technique for the specific case of crater features. 

We have developed models for the likelihood of ambiguous crater configurations given 

specific crater size distribution models. These follow from purely geometric arguments 



under the assumption that all craters are circular. Naturally, this is a worst-case scenario, 

since eccentricity is a disambiguating factor. We validate our geometric arguments using 

real data from an Odyssey THEMIS image containing nearly 1000 craters. Note that this 

study focuses exclusively on ambiguity within a pre-computed ground map. The 

spacecraft and imager used during descent are not factors. We now sketch the analysis.  

 A formal counting argument and some calculus shows that the probability of 

having two pairs of craters with centers at the same relative distance d in a disk of radius 

R is  
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Suppose two distances are considered "equal" provided they are within δp of one another. 

We can integrate Eq. 12 subject to this definition of equality to find the probability that 

any two pairs of craters are at the same relative distance. Let this quantity be called P2. 

Once a crater pair is chosen, we have implicitly fixed an origin and orientation on the full 

collection of craters. Suppose there are N craters in our region of interest and that m of 

them are used for pose determination. This leaves n = N - m remaining. Now a further 

counting argument applies to determine the probability Pgeom of having a second 

collection of m craters with a configuration geometrically identical to the first. 
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By geometrically identical, we mean that the two collections can be mapped onto one 

another by a planar Euclidean motion with less than δp error between any two 

corresponding crater centers.  

So far, we have ignored crater size. We find in Hartmann (1999) a model for 

crater distribution on Mars. An equivalent representation for the size-frequency 

distribution function can be written as  

α−= Kdn                                                       (14) 

which relates the number n of craters per square kilometer to their size d subject to two 

parameters α and K. If we integrate this expression over all sizes from dmin to dmax, we 

find an expression for the total number N of craters in a region with area A.  Then the 

probability distribution for craters within the size range dmin to dmax is then given by 

σN(dmin,dmax) = N/A. We make this explicit: 
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Now if we set  δs as the tolerance for "identical" crater size, the probability of  two craters 

having identical size is found by integrating σN(d, d + δs)2 over all possible d. We call 

this quantity P3. Then with yet another simple counting argument, we find the probability 

of having m craters of the same size out of the full collection to be  

mn

size PP ))1(1( 3−−=                                                (16) 

Finally, the probability of an ambiguous configuration of m craters out of N is given by   

sizegeomambiguous PPP =                                                   (17) 



Using information in Hartmann (1999), we derived plausible (K, α) values for lightly (K 

= 0.1, α  = 1.8), and heavily (K = 0.3, α  = 1.8) cratered terrain. Assuming 90 degree 

FOV and 8 km camera altitude, we set the diameter of our region of interest to 8 km to 

cover roughly 4 times the instantaneous camera view, δs = δp = 30 meters, dmax = 4 km, 

and dmin = 100 meters. Since our goal is to study ambiguity on the ground only, we 

assume that spacecraft location is known sufficiently well to restrict the valid map to this 

region. In Table 1, we show the results for m = 2 to 5. The probability of ambiguous 

configuration is already vanishingly small for m = 5.  

We verify these results with a real Mars image from Odyssey THEMIS and an 

exhaustive search over 917 identified craters for ambiguous configurations. An image of 

the terrain and the detected craters is shown in Fig. 7. Note that this is the same image as 

used in Experiment #2. The difference in total number (790 in Experiment #2 vs. 917 

here) of craters is due to selection of a larger portion of the image in this test as well as a 

slight change in crater detection parameters. Detected craters range in size from 55 m in 

diameter to 457 m, and the scene covers a 45 km x 22 km patch of the Martian surface. 

Observe that the large crater near the center of the image is not detected because its size 

exceeded our search threshold, not because of some inherent deficiency in the algorithm.  

 The results for m = 2 to 5 are given in Table 2. Observe that they fall squarely 

between the lightly and heavily cratered cases obtained by the geometric argument above 

up to order of magnitude. We believe that this validates our counting argument and gives 

further credence to the low probability of ambiguous configuration. 

 



4 Conclusion 

We have presented an image based localization technology that satisfies the requirements 

for future NASA missions requiring pinpoint landing with emphasis on feasibility in 

terms of localization accuracy and applicability to Martian terrain. Along with the 

detailed description of detection and matching algorithms reported elsewhere, this 

provides the first plausible solution for autonomous spacecraft localization during 

descent. Our solution is fast, robust and requires few identified landmarks to produce an 

accurate estimate. We have shown that the technique does not suffer from inherent 

ambiguity under even mild assumptions. Furthermore, we have developed a covariance 

model parameterized by image and map noise. This provides a tool for studying position 

estimation as a function of crater/landmark distribution as well as a real-time confidence 

measure on the estimate obtained from a given dataset.  
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